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CLOSURE OF THE EQUATIONS OF TURBULENCE USING 

THE ANALYTIC AND SCALING PROPERTIES OF THE 

SPECTRAL FUNCTIONS 

S. R. Bogdanov UDC 532.517 

We discuss a spectral method of closing the equations of fully-developed shear turbu- 
lence based on the hypotheses of scaling invariance of the long-wavelength fluctuations of 
the velocity field and factorization of the dependence of the spectral functions on the 
magnitude and orientation of the wave vector k. It is also assumed that certain universal 
scaling functions appearing in the parametrization are analytic in k, rather than the indi- 
vidual components of the spectral tensors. It is shown that with these assumptions the 
turbulent structure is described locally by a small number of secular parameters, for which 
a relatively simple system of quasilinear differential equations is derived. In addition 
to the correlation length, mean rate of energy dissipation, and the Reynolds stress tensor 
(as in the semi-empirical models) the secular quantities also include the "fast" part of 
the pressure-deformation-rate correlation tensor, or equivalently the second orientation 
moments of the spectral function Fij. 

It was shown in [i] that the structure of fully developed isotropic turbulence pro- 
duced by a grid in the long-wavelength region can be described by two secular fields: the 
mean rate of energy dissipation <E> and the correlation length r c. 

The possibility of a simple description of this kind is intimately connected with the 
assumption that turbulent flow behaves as a critical system. The basis for this analogy is 
the similarity of the large-scale disturbances of the velocity field and the existence of a 
power-law (with exponent B) part of the spectrum in the inertial region. The intrinsic 
scales of length and time are the dissipative (Kolmogorov) quantities r d = (Da/<E>) 11~ and 
t d = (N/<E>) I12. The scaling dimensionality a of the velocity field in the approximation 

= 5/3 is equal to !/3, while the scaling dimensionality of the field ~ in the same ap- 
proximation is (-~/2). Here ~ is the spectral index characterizing energy dissipation fluc- 
tuations and N is the kinematic viscosity. 
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In this analogy one assumes that the spectral functions have the scaling form in the 
limit k << i 

-20 =re ~(krc), T=;~at(kr~). (1) 

Here  F = F ( x ,  k) and T = T ( x ,  k) c h a r a c t e r i z e  t w o - p o i n t  q u a d r a t i c  and c u b i c  v e l o c i t y  c o r r e -  
l a t i o n s ;  x i s  t h e  d i s t a n c e  b e h i n d  t h e  g r i d ;  k = Ik l ;  k i s  t h e  wave v e c t o r ;  t h e  b a r  means t h a t  
t h e  q u a n t i t i e s  have  been  made d i m e n s i o n l e s s  w i t h  t h e  h e l p  o f  t h e  l e n g t h  and t i m e  s c a l e s  r d 

and t d.  The t e n s o r s  F~j (x, k) = (2~)-~ ~ <u~ (x) uj (x + r)> exp (-- ~kr) dr and T i ~ , j  (x ,  k)  ( d e f i n e d  ana -  

l o g o u s l y )  a r e  r e l a t e d  t o  F and T by 

F u  = p i j F ,  Ti~,j = i ( p l j O l + p z j O ~ ) T  , (2 )  

where  P i j  = 6 i j  - 0 i 0 j ;  0 i  = k i / k "  I t  f o l l o w s  f rom (1 )  and (2 )  t h a t  t h e  s p e c t r a l  f u n c t i o n s  
depend on x implicitly through <~> and rc, which means that (in the terminology of statisti- 
cal physics) the fields <g> and r c are secular. 

The dependence of <~> and r c on x can be determined using data on the small-k behavior 
of the universal functions ~ and t. Following [2], we assume the analyticity condition for 
these functions and 

-+ const v~ 0, t -+ 0 for !kr c -+ O. ( 3 )  

The constant in the first relation of (3) is taken to be unity. We note that according to 
(3) the functions Fij, Ti~,j .... are nonanalytic when kr c + 0; they have dipole-type singu- 
larities. This is consistent with the existence of hydrodynamic long-range action in an in- 
compressible fluid. 

A direct analysis of the spectral equations with the application of (3) leads to a 
power-law dependence of the basic turbulent characteristics on x [3]. In particular, the 
values 48/(40 - 3~) and -16/(40 - 3~) are obtained for the damping exponents of the quanti- 
ties <ui2> and r c. These values are very close to the experimental values and become -1.2 
and 0.4 in the Kolmogorov approximation when D = 0. It was also shown in [3] that when (3) 
is taken into account only the single parameter x = (td/2) U (d in rc/dx) - Re-l/2 remains in 
the spectral equations (U is the average velocity and Re is the Reynolds number). The quan- 
tity ~ is the ratio of t d to the "external" time scale. In the analogy with critical phe- 
nomena it is natural to identify T with the reduced temperature measuring the closeness of 
the system to the critical point (which in our case corresponds to the limit Re + ~) and to 
use the usual representation 

r~ = ~-~ ( 4 )  

(~ = 6/(4 + 3~) is the critical index determining the scaling dimensionality of the field 
[1]). 

To extend this method to shear flow it is first necessary to deal with the anisotropic 
form of the spectral tensors, i.e., to generalize the representation (2). The known solu- 
tions of this problem are based on direct parametrization: besides e, additional tensor 
arguments of the spectral functions are assumed, such as the Reynolds stress tensor <uiuj> 
(u is the velocity fluctuation) [4-9] or the tensor fij (0) obtained by integrating Fij over 
all possible orientations of the vector 0 [i0]. 

Important conclusions about the 0:dependence of the spectral functions can be made 
without having to assume particular forms of the dependence. Indeed, a great deal of ex- 
perimental data suggests a lack of isotropy in the inertial region [ii, 12]. But in this 
region the longitudinal and transverse spectra, which differ essentially in the orientation 
structure, obey the "five-thirds law". This can only be possible if the dependence of Fij 
and the higher-order tensors on kr c can be factorized from the dependence on the other argu- 
ments: 

F~j(x, k)=/~j(k, 0)~(kr~); (5) 
Til#(x, k) = fi l j(x,  O)t(kr~). (6 )  

The hypothesis (5), (6) is indirectly supported by the dependence of the Kologorov constant 
on the anisotropy parameters [13]; however a direct test using available experimental data 
is a difficult problem. On the other hand, the functions fi~ and f~o ~, which characterize 
the form of the turbulent structures, can easily be related ~o directi~ measureable quanti- 
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ties. For example, integrating (5) over all~ and using the fact that the long-wavelength 
region makes the dominant contribution to the integral, it is not difficult to obtain 

<u~uj> = _~-a~o) (7) 

(~=~(t)tldt is a universal constant determined by the form of the spectrum in the long- 
0 

wavelength region). 

We next discuss the set of secular quantities for shear turbulence. Here, as in the 
case of isotropic turbulence, we will base our treatment on the equations for the spectral 
functions, the first of which (for Fij) can be written in the form [i0, 14, 15] 

�9 OF~j Of~j  
U~ ~ + ( U ~ f  zj)~ - -  Uz~kl ~ - -  ikz (T~z,j)~ + 2~klFo = ( 8 )  

= 2 U z ~  ( O ~ O ~ F ~ j ) ~  - -  ikzO~ (O~Tz~,j)~. 

Here we have taken into account the condition of local homogeneity r e << L (L is tlhe external 
length of the problem) and Uij = 8Ui/Sxj; the index s stands for a symmetrization; summation 
is understood over repeating indices. The third and fourth terms on the left-hand side of 
(8) describe energy transfer over the spectrum [16], and the terms on the right hand side 
describe intercomponent transfer. We consider the steady case and assume that ~i~> << U, 
which implies that the diffusion terms in the equations can be neglected and the average 
velocity field can be assumed as given and not distorted by the presence of turbulence. 
This condition is well satisfied in certain cases for flow distorted by a grid. Plane vor- 
tex-free distortion [i0, 17, 18], contraction [19, 20], and uniform shear [21-23] have been 
studied extensively experimentally. In spite of their relative simplicity, these flow types 
are still of great interest theoretically, since they are prime examples of the interaction 
of mean shear flow with fluctuations. In addition, the experimental data obtained for these 
flow types are often used to choose numerical values of the constants in the semi-empirical 
models. 

Integration of (8) over all k leads to a transport equation for the Reynolds tensor 
<uiuj>, which involves the unknown term ~ij = <PSUi/Sxj> describing correlations between 

pressure and deformation-rate fluctuations. This term causes difficulties in modeling. It 
is usually represented as a sum of two parts, the first of which ~ij,1 results from the non- 
linear interaction between turbulent fluctuations, and the second ~ij,2 involves the average 
deformation rate. The Rott approximation is often used for ~ij,1 and the so-called quasi- 

isotropic model is often used for ~ij,2. In the simplest variant of this model [24-26] 

~ij ,2 = const  (Dij - -  O S i f 3 )  ( 9 )  

(Dij = -(<UiUk>3Uj/aXk) s is a tensor describing the production of stress by the average 

shear and D = Dii). 

Returning to the basic problem of determining the set of secular quantities for shear 
turbulence and a system of equations for these quantities, we note that in addition to <c> 
and r c this set should include quantities characterizing the anisotropy, such as the orienta- 
tion moments of the f functions. For example, for fij 

: ,~, (x) = ~ r O) O t . . ,  O~dO. ( 1 0 )  

The order of a moment is determined by the number of superscripts. 

The second-order moments are directly related to the tensor r multiplying (5) by 
Us163 m and integrating over all k, we obtain 

err ,(li)~.--a 
~ j , 2  = ~ z ~ s ~ j  ~-~ �9 ( i  1)  

The  r e s u l t s  o f  [ 2 7 - 2 9 ]  show i n d i r e c t l y  t h a t  o n l y  a s m a l l  n u m b e r  o f  t h e  l o w e s t - o r d e r  mo- 
m e n t s  c a n  a p p e a r  i n  t h e  s e t  o f  s e c u l a r  q u a n t i t i e s .  I n  t h i s  c o n n e c t i o n  we f i r s t  c o n s i d e r  t h e  
C r a y  e q u a t i o n  [ 1 0 ] .  w h i c h  i s  o b t a i n e d  f r o m  ( 3 )  by  i n t e g r a t i n g  o v e r  a l l  p o s s i b l e  o r i e n t a t i o n s  
of O: 

Of{q ) O In r e ~(o),_ dT (U ~(o)~ ~ O/~j 
Uk-~z~h ~ + Uh ~ j~j a--d-f" + , ~utj ] ~ - - ~ U z ~  j kz o--~-~dO-- ( 1 2 )  

- -  ~ I m J i j  ~ d '~-  + + .:~g,i - -  ~gm,j Js .... 2Uzm kfmj )s T* 
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Besides fij(0) this equation involves higher-order moments of fij, as well as moments of the 

cubic correlations. However, the analysis of this equation can be simplified by taking into 
account the analytic properties of the scalar spectral functions r and t [30-32]. Following 
the approach used above for isotropic turbulence, we first consider (12) in the limit kr c § 
0. Using the condition (3), we find an equation for the zero-order moments 

o~! o) ( 13 ) 
Uh ~ q- (0) T (z!) 

The t e n s o r  K i j  c a n  be  e x p r e s s e d  i n  t e r m s  o f  s e c o n d - o r d e r  o r i e n t a t i o n  m o m e n t s .  To do t h i s  
(' oFij 

we u s e  t h e  i d e n t i t y  [16 ]  Uz~Jkzs~-~dk=O,  w h i c h  c a n  be  t r a n s f o r m e d  w i t h  t h e  h e l p  o f  ( 5 )  t o  

= - ). ( 1 4 )  

The relation (13) is an energy balance equation for the largest (k << rc z) vortices. Math- 
(0) ematically, it is a differential equation for the tensor • which, however, also in- 

volves the second-order moments. 

Using (13) and (14), we can rewrite (12) in the simpler form 

( ) dq) + c~(z) " 2~k2#O).~ 0 in r e /o) __ U~mf!jm) k ]i~,}))skt + O. ( 1 5 )  U~ ~ ~ ~ ~z .~- -  ., ~ ~ = 

I n  t h e  s p e c i a l  c a s e  when UEm = 0 and  t h e  t u r b u l e n c e  i s  i s o t r o p i c ,  i . e .  f i j  ( 0 )  ~ 6 i j  and  

f ( s  ~ 5 i j ,  u s i n g  ( 1 )  and  ( 2 )  we c a n  e a s i l y  r e d u c e  ( 1 5 )  t o  t h e  equation 

z~ ~ d(Udf~ + ,-~kt ~--~iq~ = O, 
( 1 6 )  

which is essentially the Carman-Hovart equation [33] written in spectral form with the use 
of the scaling hypothesis (i). 

Writing (15) in dimensionless form and comparing with (16), we obtain 

[ U  o In r c (o) 1 td ~ h a--7~-l~j -- . . = - ~  ~j = - - c  , ~ j ,  (17) 
(~(t) ~(zm~)~ 9~a~(o) jizj - -  ]t~,j )s = - -  - 'c l l j  ( 1 8 )  

(~' is the "temperature" of the shear flow). It follows from (17) that in the absence of 
shear T' is equal to T. When Uij = 0, (17) reduces to an algebraic relation between the 
zero-order and second-order moments of fij" 

Integrating (15) over all k, we obtain the turbulent energy balance equation. Using 
(17) and assuming that the fluctuations are isotropic in the dissipative region, it can be 
reduced to the form 

2 <e> 6~j/3 - -  ~ij,1 = 3ur~3;[~/~tdl]~ ). ( 1 9 )  

C o n t r a c t i n g  i n d i c e s  w i t h  t h e  h e l p  o f  ( 7 ) ,  we o b t a i n  t h e  a l g e b r a i c  r e l a t i o n  

<e> = 3t$~77 ~/~ <u~>/2. ( 2 0 )  

Finally, using (20) it is not difficult to transform (19) to 

~ij,1 =--2 <u~><e> -3-I 6~j). 
- (21) 

This last relation is equivalent to the Rott formula if we set the Rott constant C 
equal to 2 and choose the quantity <uki>/<e> as the scale of time; C = 2 means that non- 
linear interactions do not participate in the process of return to isotropy [5, i0]. The 
latter is consistent with the quasilinear form of (13). 

Summarizing, using the assumptions (3) and (5), (6), we can reduce the equation for 
the tensor <uiuj> (or equivalently fij (0), to within the factor r~ ~) to the much simpler 
form (13) and the algebraic relations (17), (20), and (21). This does not completely solve 
the problem of closure and the selection of the secular quantities, however, since (13) in- 



volves different linear combinations of the components of the tensor fij(~m): longitudinal 

(Us and transverse (Pij - U~mfmj (s products with U~m. The longitudinal quanti- 

ties can be expressed directly in terms of the zero-order moments using (17), but in general 
this formula is insufficient to determine all of the components of Pij" 

In this case it is natural to widen the set of secular quantities and include the sec- 
ond-order moments fij(Pq), in addition to rc, <e>, fij (0). Equations for the second-order 

moments are ohtained from (8) after multiplication by 8p@q and integration over all 8: 

[rr r K{p.q) rr ~(~mpq)k d(P (22)  O/(P.q ) O In r c r dq) + \ cJ illlj ]s (~ -1- ~ -- u ImliJ 

(Alp@ ,(lmipq) ~ k , 2 k~fl pq) 2Ulm ( t(l{vq) ~ ~ ( (Pq) f "8~ m ) + Wild  - -  ] lmj  ]s ~ + ~] "j q) = v m j  ]~W Ki~ = - -  Ulm klOpOq dO . 

An expression for Kij(Pq) can be obtained in the same way as was done for Kij: inte- 

grating by parts and using (i0), the quantity I-!P. q) U~m~ ~ f ~  ~.~ = O p O q k ~ d k  can be represented in 

the form 

but using (15) we find 

f(Pq) ij __ O~rc 3 /I T ~(~q) rr ~(Ip) OI-T ~(lmpq) h k(J lpJij -~ Wlq/~j -- ~.t~ imli j j, 

j(pq) O;r-~3 ( ~(pq) 3rr ~(lmpq) ~ 
- -  - ~ i j  'J l m / i j  ] .  

E q u a t i n g  t h e s e  l a s t  two e x p r e s s i o n s ,  we o b t a i n  

K(P.q) <rr ;(lmpq) 
= -  Uzq]~) is. 

F u r t h e r  a n a l y s i s  o f  (22)  i s  a n a l o g o u s  t o  ( 1 2 ) .  
k r  c + 0 

~[(Pq) [ r r  ~(Pq)~ ~ ( P q )  , ( l~pq) \  
( lmj d~" 

Using ( 2 4 ) ,  (22)  t a k e s  t h e  fo rm 

_ 0 In % f!p.q) - TI ;(Impq)~ [ ~(lpq) ;(lmipq) ~ 7..~ ~ (Pq) 

Comparing with (16), we have 

td 

(23) 

It follows from (22) that in the limit 

(24) 

a ]n  r c f (?q)  TF r 
U k  8 x  k .'~3 ~ A r c  ] i j  - -  r l m / { j  ] , C - - 1 / v , ( p q ) .  

(~( l~q) -~(Imipq)~ ,~--a'7(pq) 
]~l , j  - -  ] t m , j  ]s  ~ - -  ~rcT. ~j " 

, FPij (or equiva- 

(25) 

(26) 

(27 )  

Like (18), the result (27) is an algebraic relation between the moments of the functions fij 
and fis The relation (26) has the same structure as (17) and illustrates the general 
rule that contraction of two upper indices of an orientation tensor fij(s with Us 
lowers its order by two. 

With the help of (26) we can obtain information on the components of the tensor Pij 
sufficient for closure. Indeed, using (23) and (26), (24) can be rewritten in the form 

a/(Pq) 
J i j  { rT ;(Pq)~ ( l i p q )  + , ,  + = ( 2 s )  

Contracting in (28) the indices p, i with Upi and q, j with Uqj, and using (26), we obtain 

U a (>~) 2U ~(m) / aup~ acq~  . .  ( 2 9 )  

Here  

a in r c  7 /,t71 ' ( 3 0 )  A = U ~  ~ 
^ ^  

and t h e  n o t a t i o n  PU i n d i c a t e s  t h e  t e n s o r  p r o d u c t .  

The s y s t e m  o f  e q u a t i o n s  ( 1 3 ) ,  ( 1 7 ) ,  ( 2 0 ) ,  (29 )  f o r  <E>, r c ,  f i j ( 0 )  
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lently, rc, <E>, <uiuj>, ~ij,z, according to (7) and (9)) is fundamental for classes of 

turbulent flow considered here. The system contains only the single constant ~, which can 
be determined independently from spectral data. 

We note that closure was obtained using only the zero and second-order moments. Higher- 
order moments can be expressed in terms of the lower-order moments algebraically. But the 
differential equation for PU shows that the attempts of [5, 24-26, 34] to give a local de- 
scription of turbulence using only the fields <g>, rc, <uiuj> are not completely correct. 

To test the method we apply the above system of equations to accelerating flow behind 
a grid in an axisymmetric converging tube. This type of channel is widely used to improve 
turbulent characteristics in aerodynamic tubes [19, 20, 35-38], however the experimental 
data are widely scattered and are sometimes inconsistent with one another [20, 38]. There 
are also unresolved theoretical questions in this case. For example, it remains essentially 
unknown whether the intensity <u~> of longitudinal turbulent fluctuations increases or de- 
creases as a result of contraction [39]. 

The average velocity field in this problem can be considered as given: it is deter- 
mined only by the geometry of the channel walls. For simplicity we consider the turbulent 
characteristics along the channel axis. Let x and U be the longitudinal coordinate and the 
corresponding component of the average velocity. Then the average deformation rate tensor 
has the simple form 

i 0U 
Uij = 3•215 • ='-f'-~-x' 

t h e  t e n s o r s  f i j ( O )  and P i j  a r e  d i a g o n a l  and t h e  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  r e d u c e  t o  

o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s .  

I t  can  be shown t h a t  t h e  p r o d u c t s  PU and PU 2 can  be  e x p r e s s e d  in  t e r m s  o f  t h e  s i n g l e  
independent component P:I of the tensor Pij; 

>U = 3• >U~ = 3• �9 (31)  

t h e  i d e n t i t y  f ~ j ( s  = O, wh ich  f o l l o w s  f r o m  t h e  i n c o m p r e s s i b i l i t y  c o n d i t i o n ,  t h e  Us ing  

q u a n t i t y  P : :  can  be  w r i t t e n  in  t h e  fo rm 

= ~ 7 1 1  " (32) 

the relation fij (s163 = fij (0) and the definition (30), we obtain On the other hand, using 
from (17) 

. ~ Ao) ~• n) (A + ~)J i j .  (33)  j i j  

Compar ing  (33)  w i t h  i = j = 1 and ( 3 2 ) ,  we h a v e  

P , :  = (A + •176 (34)  

Us ing  (31), (32), and (34), t h e  s y s t e m  o f  e q u a t i o n s  f o r  t h e  s e c u l a r  q u a n t i t i e s  t a k e s  
the form 

d~(0) (0) 
-:: ~-(o) dhi = (3A ~ , Xo) U - ~ x  = 7 ~ h : ,  U -~x + z• - -  6• (35)  

40) 9A• + •176 2UdX(A + •176 U d ((A + • • + 5• (A + • , n  --  ,:~ 
dx  = ~ 711 

dr c 
U gZ = Ar~ + 2r~71zvt21. 

Using the algebraic representation (20) for <s>. it is not difficult to show that this sys- 
tem is closed for the functions r c, f11 (0), fit (0), and A. We next consider its solution. 

From the first and third equations we obtain the "integral of the motion" 

IA + • = 
.x (1~)2m -- b = const, (36 )  

from which we can eliminate the variable A from the system of equations. After some straight- 
forward calculations and changes of variables, we obtain a Bernoulli equation for f11 (0) 

d,<o) ,(o) o. " 1 1  7 "11 7 b (37 )  
dU + 2 U 2 U a = 
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Its solution is written as 

11 = kt--~c8] cV, (38)  

where B = 3U2(0)/b - 1 is a constant; c = U(x)/U(0) is the effective convergence of the 
flow; x = 0 corresponds to the initial cross section of the converging tube. Here and be- 
low we present solutions normalized to the initial value. For example, f11(0) = I for c = i. 

Substituting (38) for f11(0) into (36), we have 

A = 3• + pc 3) -- • (39)  

Finally, the two remaining equations of the system (35) are easily solved with the 
help of (38) and (39). We obtain the following results for the parameters of greatest prac- 
tical interest: the intensity of longitudinal fluctuations, the correlation length, and the 
anisotropy parameter <ui2>/<u12>: 

i 1 I12]-61~ = cA / t + ~ ? [ t  B ((v~ - ~ - t ) +  (~ + ~ + t) c-3 dx]  ( 4 0 )  

r ~ = ~  . ,  " k~--/-yaj ; ( 4 1 )  

2 2 l+Bc3 ((?~-- ~ - -  i)c3 + (7 + ~ + I~). (42)  <~>l<~J- a . +  ~)~ 

Here L is the length of the contraction part of the flow; B = 5~u12(0)>L/(U(0)rc(0)) is the 
ratio of the "external" time scale L/U to the time scale rc/U of energy-containing turbu- 
lent fluctuations; y = <ui2(0)>/<Um2(0)>. For isotropic initial conditions y = 3. 

We analyze the results of the calculation and formulate some conclusions. 

i. When c = 1 (no contraction) (40) and (41) reduce to the earlier-obtained power-law 
relations describing the decay of turbulence behind a grid. 

2. Substituting (39) for A into (34) we obtain P11-- 3• ~(0) ' t ~ c  8711 or equivalently 

dU 
r = 3 <~5 ~ / ( t  + ~a). 

This last formula illustrates the difference between our method and the models cited 
above, in which (9) is postulated for ~ij,2. 

3. The relative simplicity with which we were able to integrate the system (:35) re- 
sults from the quasilinear (in the orientation moments) nature of the original equations. 
In this connection it is natural to compare our method of calculation to the fast distor- 
tion theory. 

In the limit B << i, which corresponds to the assumption of "fast" distortion, we have 
from (40) and (42) <ul2(x)> ~ c -2 , <ui2(x)> ~ c for large c. These results are consistent 
with the results from the fast distortion theory and with the earlier estimates of Prandtl 
and Taylor [20]. However this agreement should not be overemphasized, since the formal 
limit B << 1 is not realizable physically: experimentally one obtains in the best case 
values of B close to unity. 

The difference between the two methods is much more important. In the fast distortion 
theory the nonlinear and dissipative terms are simply eliminated from the spectral equa- 
tions. In our method these terms are taken into account and play a fundamental role in the 
determination of the universal spectral functions, whose properties in the long-wavelength 
region (scaling, factorization, and the limiting behavior when k + 0) make it possibe to 
close the system of equations for the basic turbulent characteristics and determine its 
quasilinear nature. It is not actually necessary to use the explicit form of the k-depen- 
dence of the spectral functions, in contrast to the fast distortion theory, where the ex- 
plicit forms are required to formulate the initial conditions. 

4. The solution of the system (35) includes the parameter 8. According to (36) and 

the relation U~mfij(~m) = Afij(0) , this parameter is determined by the initial values of 

the zeroth and second-order orientation moments. The direct measurement of fij(~m) is a 
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complicated problem, however. In addition, there is the fundamental difficulty that if the 
turbulence on entry is isotropic in the sense that Fij - Pij, then the condition Us163 

fij(0) obviously cannot be satisfied. The resolution of this contradiction is that an isotropic 
be used in general for the tensor fij (s even if fij (0) is iso- parameterization cannot 

tropic. This is because the average shear affects all orientation moments independently 
(this has been shown here for the zero and second-order moments). Turbulence produced by 
the shear when the fluid passes through the grid cannot be eliminated and therefore the 
problem is not as simple as normally assumed: even if <uiuj> ~ fij (0) ~ 6ij, the isotropy 

condition Fij ~ Pij does not automatically follow. 

In this sense it is appropriate to speak of turbulence having memory and the memory 
can be retained even in the higher-order moments in the form of nonlocal dependence on Uij. 
Isotropic turbulence must therefore be considered only as a very crude model of real turbu- 
lent flow, which is never realized in a literal sense. One concludes for flows in converg- 
ing tubes that the value of the parameter $ and the quantitative results of contraction de- 
pend essentially on the type of grid and the level of turbulence in the initial cross sec- 
tion of the nozzle. This conclusion is supported directly by experiment and explains the 
large scatter in the experimental data. 

5. For direct comparison with experiment it is simplest to find ~ from (42). For ex- 
ample, we obtain a value of ~ slightly greater than 0.5 from the results of [20] with ~ = 
3. In this case the basic turbulent characteristics depend monotonically on x. 

More complex behavior has been noted in a number of experimental papers. For example, 
<u12> was observed to decrease in [19, 20] only up to the cross section with c = 4, after 
which the intensity of longitudinal fluctuations grew. However, as noted in [38], this 
effect can occur because of acoustic perturbations on the outlet from the converging tube. 

The author deeply thanks L. Ts. Adzhemyan for useful discussions. 
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